Electrical Properties of Cement-Based Composites with Carbon Nanotubes, Graphene, and Graphite Nanofibers
نویسندگان
چکیده
This study was conducted to evaluate the effect of the carbon-based nanomaterial type on the electrical properties of cement paste. Three different nanomaterials, multi-walled carbon nanotubes (MWCNTs), graphite nanofibers (GNFs), and graphene (G), were incorporated into the cement paste at a volume fraction of 1%. The self-sensing capacity of the cement composites was also investigated by comparing the compressive stress/strain behaviors by evaluating the fractional change of resistivity (FCR). The electrical resistivity of the plain cement paste was slightly reduced by adding 1 vol % GNFs and G, whereas a significant decrease of the resistivity was achieved by adding 1 vol % MWCNTs. At an identical volume fraction of 1%, the composites with MWCNTs provided the best self-sensing capacity with insignificant noise, followed by the composites containing GNFs and G. Therefore, the addition of MWCNTs was considered to be the most effective to improve the self-sensing capacity of the cement paste. Finally, the composites with 1 vol % MWCNTs exhibited a gauge factor of 113.2, which is much higher than commercially available strain gauges.
منابع مشابه
Electrical properties of UHMWPE/graphite nanoplates composites obtained by in-situ polymerization method
There are described nanocomposites based on ultra high molecular weight polyethylene and graphite nanoplates prepared by in-situ polymerization method. It is carried out a comprehensive study of electric properties of these composites, including direct current (dc) and alternating current (ac) properties. There is explored dependence of the conductivity and dielectric permeability on filler con...
متن کاملCatalytic Synthesis of Carbon Nanotubes and Nanofibers
Carbon nanotubes and nanofibers are graphitic filaments/whiskers with diameters ranging from 0.4 to 500 nm and lengths in the range of several micrometers to millimeters. Carbon nanofibers and nanotubes are grown by the diffusion of carbon (via catalytic decomposition of carbon containing gases or vaporized carbon from arc discharge or laser ablation) through a metal catalyst and its subsequent...
متن کاملElectrical and electromagnetic properties of isolated carbon nanotubes and carbon nanotube-based composites
Isolated carbon nanotubes (CNTs), CNT films and CNT-polymer nanocomposites are a new generation of materials with outstanding mechanical, thermal, electrical and electromagnetic properties. The main objective of this article is to provide a comprehensive review on the investigations performed in the field of characterizing electrical and electromagnetic properties of isolated CNTs and CNT-reinf...
متن کاملGraphene-based hybrid materials: synthetic approaches and properties
Carbon has a unique chemistry reflected in its wide presence in the inorganic and organic world – benzene, diamond, graphite, fullerene, carbon nanotubes and now graphene – carbon seems to be at the centre of action in the playground of scientific research. In this review, synthesis and unique properties of graphene and graphene-based composites have been discussed with particular emphasis on t...
متن کاملPolygonization and anomalous graphene interlayer spacing of multi-walled carbon nanofibers
The graphene interlayer spacing in pure graphite is known to have a minimum value of dmin=0.3354 nm, while defective graphites typically have larger interlayer spacings. Using x-ray diffraction, we find that the graphene interlayer spacing in multi-walled carbon nanofibers heat treated above 2800 K is distinctly smaller than dmin. To explain this unusual observation, we investigate the structur...
متن کامل